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Introduction 

The chinchilla currently is the animal of choice for use as a 
model to establish the effects of various parameters of noise and 
blast exposure on auditory structure and function. 

The behavioral methods in use for measuring hearing in the 
animal model are based on conditioning techniques (Miller, 1970; 
Blakeslee, et al., 1978). These methods provide valid and 
reliable measures of auditory thresholds when properly used, but 
do have limitations. First, the data may be affected by differ- 
ing animal motivation from session to session and by the training 
procedures, particularly when multiple experimenters contribute 
to a single data pool. Second, the large investment of time and 
effort for both the training and measurement phases of an experi- 
ment limits the rate at which animals can be processed and makes 
the loss of an animal from a project extremely costly to the 
overall effort. A rapid, objective method for measuring hearing 
in the animal model would eliminate these limitations of the 
behavioral procedures. 

A rapid method of threshold assessment, based on the detec- 
tion of electrical responses of the auditory system to sound 
stimuli, now is being used in some laboratories (Bancroft, et 
al., 1991). A chronic electrode is implanted in the auditory 
system, usually in the inferior colliculus, and time-locked 
responses evoked by brief, rapidly repeated tone bursts are 
recorded, then averaged to improve the signal-to-noise ratio. 
Several stimulus presentations are made per second and a response 
can be detected visually in the averaged waveform after several 
hundred presentations. The thresholds obtained in this manner 
compare well with those derived from behavioral methods when 
signals of the same duration are used for both measures 
(Henderson, et al., 1983). Visual detection of the response is 
not objective, however, so it is subject to problems such as 
criterion differences between experimenters and criterion shifts 
across time for individual experimenters. 

Several objective methods of detecting averaged electrical 
responses have been proposed for use in human evoked-response 
audiometry. Two of the methods outlined below have shown the 
most promise in terms of objectivity and reliability: 

A statistical method based on correlation has been used by 
Arnold (1985), Salvi, et al. (1987), and Weber and Fletcher 
(1980). If time-locked responses to stimuli are present, the 
correlation between two averaged samples of those responses will 
be greater than that of the background activity. The background 
noise at the recording site is assumed to be random in the 
absence of a stimulus, so averaged samples of the noise taken at 
different times will not be correlated with one another. To 
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determine objectively the presence of responses, samples of 
activity time-locked to the stimulus are taken, averaged, and the 
correlation calculated between the two sets of averages. If the 
obtained correlation is greater significantly than that of the 
background, or zero, a response is present. 

A second statistical method is based on evaluation of the 
ratio of the variance of the background noise to that of the 
response evoked by the stimulus (Elberling and Don, 1984; Don, 
Elberling and Waring, 1984). The variance for the background 
noise is estimated by sampling a single point of the response 
waveform across individual stimulus presentations. The variance 
of the response is calculated across points of the averaged 
recorded waveform. The ratio of the two variances follows the 
F-distribution and can be used to determine the presence of a 
response with any desired probability of error. 

The third method, originally based on the visual detection of 
a derived response of the cochlear potential (Pantev and Pantev, 
1982; Pantev et al., 1985), has been adapted by Berlin and his 
coworkers (Berlin et al., 1991; Hood et al., 1991) for use in 
evoked response work involving the central auditory system. A 
tone burst, some 20 dB above threshold, repeatedly is presented 
together with a continuous tone of the same frequency, but at a 
level near the expected threshold. The tone burst then is 
presented without the continuous tone. The responses to each of 
the stimulus configurations are averaged separately, and then the 
two sets of averaged data are differenced. The result is the 
response to the continuous tone. Lower thresholds have been 
obtained with this method than with more conventional methods. 
In addition, as the continuous tone has a narrower bandwidth than 
the tone burst, the derived response is more frequency-specific 
than can be obtained with conventional methods. 

Each of these methods appears to have merit when compared 
with conventional, visual methods of threshold estimation, but 
they never have been directly compared with one another. The 
present experiment was designed to compare the two objective 
statistical methods with one another using both conventional 
tone-burst data and derived data from the differencing method of 
Berlin and his coworkers. The results will be compared with 
thresholds obtained using behavioral methods. 

Methods 

Six 1-to-2-year old male chinchillas bred and raised in the 
U.S. Army Aeromedical Research Laboratory (USAARL) colony were 
used as subjects. The animals were anesthetized by intramuscular 
injection of a combination of Ketamine (40 mg/kg) and Xylazine 
(2-5 mg/kg). The anesthetized animals were prepared for aseptic 
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surgery by plucking the fur from the top of the head, scrubbing 
the plucked area; and swabbing it with Betadine. A lubricant was 
applied to the eyes to prevent drying. The animal then was 
placed in a stereotaxic instrument and draped. An incision was 
made near the midline, the skin retracted, and the exposed skull 
cleared of periosteum by scraping. The exposed portion of the 
skull then was coated with a solution of silver nitrate followed 
by a cyanoacrilate adhesive to provide a stable base for the 
cement used in fixing the electrode in place. The skull was 
marked according to previously determined stereotaxic coordinates 
and a dental burr was used to make a 2 mm opening. After cutting 
the dura, a concentric, bipolar electrode was lowered slowly into 
the left inferior colliculus while electrical activity evoked by 
a broadband click was monitored by an oscilloscope and an audio 
system. At the proper depth, as determined by the best response 
as well as by the stereotaxic coordinates, the electrode was 
cemented in place. The incision was closed and a topical 
antibiotic applied to the area. 

Data collection was not initiated until a minimum of 2 weeks 
was allowed for recovery from the procedure. 

The animal was restrained for the electrophysiological 
measurements in an apparatus designed for behavioral testing 
(Blakeslee, et al., 1978). The apparatus fixed the animal's head 
with respect to movement in the horizontal and coronal planes, 
but did not prevent pinna movement or rotation of the head about 
the interaural axis. 

Eauinment and procedures 

Stimuli for the experiment were computer-generated and 
controlled. An inverse-FFT routine was used to generate the 
digital representations of the acoustic waveforms with 
experimenter-specified frequencies, durations, phases, and 
amplitude envelopes. The stimulus waveforms were calculated 
prior to the experimental sessions and stored in memory. During 
experimental sessions, they were output via 16-bit D-to-A 
converters and filtered appropriately for the sampling rate. 
After conversion and low-pass filtering, the stimuli were 
amplified, then led to an electrically-shielded speaker located 
inside a double-walled, sound-insulated booth. The speaker was 
placed 1 meter in front of the animal. The sound field in the 
position occupied by the animal's head was calibrated at each 
frequency to be used prior to data collection. The calibration 
results were used by the software to set the stimulus levels 
desired for experimental conditions by means of a programmable 
attenuator. 
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The stimuli were 12 ms tone bursts at 250, 500, 1000, 2000, 
4000, and 8000 Hz. They had rise and decay durations of 6 ms. 
Previous evoked-potential work using these stimuli (Langford, 
Mozo and Patterson, 1989) showed them to have acceptable signal- 
to-noise ratios and bandwidths. The tone bursts were alternated 
with tone bursts temporally centered on a 120 ms tone of the same 
frequency, but. at a level 15 dB below that of the burst. Since 
the time relation between the burst and the tone was fixed, the 
relative phases of the two differed at each frequency. At each 
frequency, the levels were varied in 5 dB steps over a 25 dB 
range encompassing the anticipated threshold. The number of 
repetitions was varied depending on the response magnitude 
obtained from each animal. In general, 200 to 400 repetitions 
for each level at each of four frequencies were run in each 
session. Each measurement session lasted approximately 45 
minutes. 

The experiment was designed so that the same data could be 
used to evaluate both of the statistical threshold determination 
methods under study. Data were collected beginning 3 ms after 
the onset of each tone burst for a period of 25.6 ms and for a 
like period of time beginning 51.2 ms after cessation of 
stimulation. This yielded background activity interleaved with 
responses to the tone bursts and with the tone bursts plus the 
long-duration tones. Each of the 25.6 ms data intervals 
contained 128 points. Data for each of the intervals were stored 
separately for off-line analysis. 

The data for each stimulus condition were averaged later in 
blocks of 200 to 4000 repetitions. Each data epoch consisted of 
128 points; however, adjacent points are not independent. The 
partial correlation between points has the effect of inflating 
the degrees of freedom used in the statistical tests. Since the 
lack of independence between points is a function of the 
frequency bandwidth used in the recording, autocorrelations were 
calculated for random noise samples generated with the same 
sampling rate and bandwidth used in data collection. The 
correlations approached zero when every fourth point was used in 
the calculations. Therefore, every fourth point was used in the 
computations of the correlations and variance ratios during data 
analysis. 

Pairs of poststimulus waveforms, the results of averaging odd 
and even numbered responses to the stimulus presentations, 
were correlated (Pearson's r) with one another for each stimulus 
condition. The variance ratio for the entire set of data used in 
the correlation computations was calculated as F = VAR(S)/VAR(N). 
VAR(S) is the variance of the averaged postsignal data taken 
during the temporal interval presumably containing the response. 
VAR(N) is the background noise variance calculated for a single 
point across all responses. This method of estimating the noise 
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variance has been shown to be an accurate measure of the variance 
of the true background noise (Elberling and Don, 1984). A 
response was deemed to be present if the 0.05 level of statisti- 
cal significance was reached in 4000 or fewer trials. Threshold 
was defined as the mean of the lowest level at which a response 
was present and the level 5 dB below it at which no response was 
present. 

Results and discussion 

Tone-burst condition 

With the exception of one frequency in one animal, there was 
perfect agreement between the thresholds obtained by the corre- 
lation and variance ratio methods for the traditional tone burst 
data. Since the two thresholds in that one case differed by only 
5 dB, they were averaged and the audiograms produced by the two 
methods were considered the same. The tone burst thresholds are 
compared with a database of 118 behavioral thresholds obtained 
from the chinchilla by Patterson, et al. (1991) in Figure 1. The 
greatest differences occur at 0.5 and 8 kHz, where the separation 
between the two is only 3.8 dB. 

The durations of the stimuli used in obtaining the two sets 
of thresholds were not the same, however. The evoked-potential 
data were obtained using stimuli with an effective duration of 4 
ms (Dallos and Olsen, 1964), while the behavioral data are based 
on stimuli with durations. exceeding the upper limit for temporal 
integration in the chinchilla. Henderson (1969), as well as 
others (Wall and Ferraro, 1981; Davis and Ferraro, 1983) have 
shown the chinchilla integrates the energy of an auditory 
stimulus in the same manner as human subjects, at least for 
durations up to 100 ms. This would place the 4 ms threshold 
stimuli used in the present study some 14 dB below those used for 
obtaining the behavioral thresholds. Thus, the sensitivity of 
either of the objective statistical methods, when applied to 
conventional evoked potential data, is greater considerably than 
that of behavioral methods. 

A study by Arnold (1985), who used supra-threshold click- 
evoked data obtained from human subjects, also compared the 
correlation and variance ratio methods with a subjective, visual 
method for determining the presence of a response. At 10 dB 
above behavioral threshold, the lowest level used in that study, 
the correlation method was slightly more sensitive than the 
visual method and the variance ratio was the least sensitive. 
Her method for estimating the variance of the background activity 
was different from that used in the present study, however. In 
addition, two replications of 2000 averaged repetitions of 
stimulus-evoked activity interleaved with two runs of 2000 
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Figure 1. Behavioral thresholds compared with conventional tone- 
burst evoked thresholds of present study. Tone-burst 
evoked thresholds represent combined data from corre- 
lation and variance ratio methods. 

averaged repetitions of background activity were used in those 
calculations, so that changes in the signal-to-noise ratio 
between samples could not be ruled out. 
threshold values were obtained. 

Finally, no frequency- 
Therefore, the results of that 

study cannot be compared directly with those of the present 
study. 

Derived condition 

The thresholds obtained from derived data using the two 
statistical methods did not show the high degree of correspon- 
dence found for the conventional tone-burst data. Differences of 
5 dB between the correlation and variance ratio methods for at 
least one frequency in each of four animals were found. 
of these discrepancies, 

Because 

treated separately. 
the thresholds for the two methods were 

the one obtained 
The two sets of thresholds are compared with 

Figure 2. 
from the conventional tone burst method in 

Although others (Hood, et al., 1991) have reported 
lower thresholds for the chinchilla at the higher frequencies 
using the derived evoked-potential method, no such advantage was 
found in the present study. The thresholds based on the derived 
waveforms are parallel to and slightly higher than those obtained 
with the conventional method. 
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Figure 2. Conventional tone-burst evoked thresholds compared 
with derived thresholds. Tone-burst evoked thresh- 
olds represent combined data from correlation and 
variance ratio methods. Correlation and variance- 
ratio derived thresholds are plotted separately. 

Several procedural differences between the two studies may 
explain the differences in the results. First, the thresholds 
reported by Hood, et al. (1991) were based on subjective, visual 
inspection of the data. Second, their evoked potentials were 
recorded from surface electrodes and may represent activity from 
different brain regions than those of the present study. Third, 
their continuous tones and tone bursts were not phase-locked as 
were those in the present study. 

Conclusions 

The objectively determined audiograms based on evoked- 
potential methods are parallel to those based on behavioral 
methods. 

When the difference in stimulus duration between the evoked- 
potential and behavioral methods is taken into account, the 
evoked-potential method proves to be the more sensitive. 

The derived-potential method, as implemented in the present 
study, is less sensitive than the conventional evoked-potential 
method. 
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